(0) Obligation:

Clauses:

div(X, s(Y), Z) :- div_s(X, Y, Z).
div_s(0, Y, 0).
div_s(s(X), Y, 0) :- lss(X, Y).
div_s(s(X), Y, s(Z)) :- ','(sub(X, Y, R), div_s(R, Y, Z)).
lss(s(X), s(Y)) :- lss(X, Y).
lss(0, s(Y)).
sub(s(X), s(Y), Z) :- sub(X, Y, Z).
sub(X, 0, X).

Query: div(g,g,a)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

lssA(s(T36), s(T37)) :- lssA(T36, T37).
lssA(0, s(T42)).
div_sB(0, T15, 0).
div_sB(s(T24), T25, 0) :- lssA(T24, T25).
div_sB(s(T49), T50, s(T52)) :- subC(T49, T50, X49).
div_sB(s(T49), T50, s(T52)) :- ','(subC(T49, T50, T55), div_sB(T55, T50, T52)).
subC(s(T66), s(T67), X77) :- subC(T66, T67, X77).
subC(T72, 0, T72).
divD(T7, s(T8), T10) :- div_sB(T7, T8, T10).

Query: divD(g,g,a)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
divD_in: (b,b,f)
div_sB_in: (b,b,f)
lssA_in: (b,b)
subC_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

divD_in_gga(T7, s(T8), T10) → U7_gga(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
div_sB_in_gga(0, T15, 0) → div_sB_out_gga(0, T15, 0)
div_sB_in_gga(s(T24), T25, 0) → U2_gga(T24, T25, lssA_in_gg(T24, T25))
lssA_in_gg(s(T36), s(T37)) → U1_gg(T36, T37, lssA_in_gg(T36, T37))
lssA_in_gg(0, s(T42)) → lssA_out_gg(0, s(T42))
U1_gg(T36, T37, lssA_out_gg(T36, T37)) → lssA_out_gg(s(T36), s(T37))
U2_gga(T24, T25, lssA_out_gg(T24, T25)) → div_sB_out_gga(s(T24), T25, 0)
div_sB_in_gga(s(T49), T50, s(T52)) → U3_gga(T49, T50, T52, subC_in_gga(T49, T50, X49))
subC_in_gga(s(T66), s(T67), X77) → U6_gga(T66, T67, X77, subC_in_gga(T66, T67, X77))
subC_in_gga(T72, 0, T72) → subC_out_gga(T72, 0, T72)
U6_gga(T66, T67, X77, subC_out_gga(T66, T67, X77)) → subC_out_gga(s(T66), s(T67), X77)
U3_gga(T49, T50, T52, subC_out_gga(T49, T50, X49)) → div_sB_out_gga(s(T49), T50, s(T52))
div_sB_in_gga(s(T49), T50, s(T52)) → U4_gga(T49, T50, T52, subC_in_gga(T49, T50, T55))
U4_gga(T49, T50, T52, subC_out_gga(T49, T50, T55)) → U5_gga(T49, T50, T52, div_sB_in_gga(T55, T50, T52))
U5_gga(T49, T50, T52, div_sB_out_gga(T55, T50, T52)) → div_sB_out_gga(s(T49), T50, s(T52))
U7_gga(T7, T8, T10, div_sB_out_gga(T7, T8, T10)) → divD_out_gga(T7, s(T8), T10)

The argument filtering Pi contains the following mapping:
divD_in_gga(x1, x2, x3)  =  divD_in_gga(x1, x2)
s(x1)  =  s(x1)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
div_sB_in_gga(x1, x2, x3)  =  div_sB_in_gga(x1, x2)
0  =  0
div_sB_out_gga(x1, x2, x3)  =  div_sB_out_gga
U2_gga(x1, x2, x3)  =  U2_gga(x3)
lssA_in_gg(x1, x2)  =  lssA_in_gg(x1, x2)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
lssA_out_gg(x1, x2)  =  lssA_out_gg
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
divD_out_gga(x1, x2, x3)  =  divD_out_gga

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

divD_in_gga(T7, s(T8), T10) → U7_gga(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
div_sB_in_gga(0, T15, 0) → div_sB_out_gga(0, T15, 0)
div_sB_in_gga(s(T24), T25, 0) → U2_gga(T24, T25, lssA_in_gg(T24, T25))
lssA_in_gg(s(T36), s(T37)) → U1_gg(T36, T37, lssA_in_gg(T36, T37))
lssA_in_gg(0, s(T42)) → lssA_out_gg(0, s(T42))
U1_gg(T36, T37, lssA_out_gg(T36, T37)) → lssA_out_gg(s(T36), s(T37))
U2_gga(T24, T25, lssA_out_gg(T24, T25)) → div_sB_out_gga(s(T24), T25, 0)
div_sB_in_gga(s(T49), T50, s(T52)) → U3_gga(T49, T50, T52, subC_in_gga(T49, T50, X49))
subC_in_gga(s(T66), s(T67), X77) → U6_gga(T66, T67, X77, subC_in_gga(T66, T67, X77))
subC_in_gga(T72, 0, T72) → subC_out_gga(T72, 0, T72)
U6_gga(T66, T67, X77, subC_out_gga(T66, T67, X77)) → subC_out_gga(s(T66), s(T67), X77)
U3_gga(T49, T50, T52, subC_out_gga(T49, T50, X49)) → div_sB_out_gga(s(T49), T50, s(T52))
div_sB_in_gga(s(T49), T50, s(T52)) → U4_gga(T49, T50, T52, subC_in_gga(T49, T50, T55))
U4_gga(T49, T50, T52, subC_out_gga(T49, T50, T55)) → U5_gga(T49, T50, T52, div_sB_in_gga(T55, T50, T52))
U5_gga(T49, T50, T52, div_sB_out_gga(T55, T50, T52)) → div_sB_out_gga(s(T49), T50, s(T52))
U7_gga(T7, T8, T10, div_sB_out_gga(T7, T8, T10)) → divD_out_gga(T7, s(T8), T10)

The argument filtering Pi contains the following mapping:
divD_in_gga(x1, x2, x3)  =  divD_in_gga(x1, x2)
s(x1)  =  s(x1)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
div_sB_in_gga(x1, x2, x3)  =  div_sB_in_gga(x1, x2)
0  =  0
div_sB_out_gga(x1, x2, x3)  =  div_sB_out_gga
U2_gga(x1, x2, x3)  =  U2_gga(x3)
lssA_in_gg(x1, x2)  =  lssA_in_gg(x1, x2)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
lssA_out_gg(x1, x2)  =  lssA_out_gg
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
divD_out_gga(x1, x2, x3)  =  divD_out_gga

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DIVD_IN_GGA(T7, s(T8), T10) → U7_GGA(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
DIVD_IN_GGA(T7, s(T8), T10) → DIV_SB_IN_GGA(T7, T8, T10)
DIV_SB_IN_GGA(s(T24), T25, 0) → U2_GGA(T24, T25, lssA_in_gg(T24, T25))
DIV_SB_IN_GGA(s(T24), T25, 0) → LSSA_IN_GG(T24, T25)
LSSA_IN_GG(s(T36), s(T37)) → U1_GG(T36, T37, lssA_in_gg(T36, T37))
LSSA_IN_GG(s(T36), s(T37)) → LSSA_IN_GG(T36, T37)
DIV_SB_IN_GGA(s(T49), T50, s(T52)) → U3_GGA(T49, T50, T52, subC_in_gga(T49, T50, X49))
DIV_SB_IN_GGA(s(T49), T50, s(T52)) → SUBC_IN_GGA(T49, T50, X49)
SUBC_IN_GGA(s(T66), s(T67), X77) → U6_GGA(T66, T67, X77, subC_in_gga(T66, T67, X77))
SUBC_IN_GGA(s(T66), s(T67), X77) → SUBC_IN_GGA(T66, T67, X77)
DIV_SB_IN_GGA(s(T49), T50, s(T52)) → U4_GGA(T49, T50, T52, subC_in_gga(T49, T50, T55))
U4_GGA(T49, T50, T52, subC_out_gga(T49, T50, T55)) → U5_GGA(T49, T50, T52, div_sB_in_gga(T55, T50, T52))
U4_GGA(T49, T50, T52, subC_out_gga(T49, T50, T55)) → DIV_SB_IN_GGA(T55, T50, T52)

The TRS R consists of the following rules:

divD_in_gga(T7, s(T8), T10) → U7_gga(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
div_sB_in_gga(0, T15, 0) → div_sB_out_gga(0, T15, 0)
div_sB_in_gga(s(T24), T25, 0) → U2_gga(T24, T25, lssA_in_gg(T24, T25))
lssA_in_gg(s(T36), s(T37)) → U1_gg(T36, T37, lssA_in_gg(T36, T37))
lssA_in_gg(0, s(T42)) → lssA_out_gg(0, s(T42))
U1_gg(T36, T37, lssA_out_gg(T36, T37)) → lssA_out_gg(s(T36), s(T37))
U2_gga(T24, T25, lssA_out_gg(T24, T25)) → div_sB_out_gga(s(T24), T25, 0)
div_sB_in_gga(s(T49), T50, s(T52)) → U3_gga(T49, T50, T52, subC_in_gga(T49, T50, X49))
subC_in_gga(s(T66), s(T67), X77) → U6_gga(T66, T67, X77, subC_in_gga(T66, T67, X77))
subC_in_gga(T72, 0, T72) → subC_out_gga(T72, 0, T72)
U6_gga(T66, T67, X77, subC_out_gga(T66, T67, X77)) → subC_out_gga(s(T66), s(T67), X77)
U3_gga(T49, T50, T52, subC_out_gga(T49, T50, X49)) → div_sB_out_gga(s(T49), T50, s(T52))
div_sB_in_gga(s(T49), T50, s(T52)) → U4_gga(T49, T50, T52, subC_in_gga(T49, T50, T55))
U4_gga(T49, T50, T52, subC_out_gga(T49, T50, T55)) → U5_gga(T49, T50, T52, div_sB_in_gga(T55, T50, T52))
U5_gga(T49, T50, T52, div_sB_out_gga(T55, T50, T52)) → div_sB_out_gga(s(T49), T50, s(T52))
U7_gga(T7, T8, T10, div_sB_out_gga(T7, T8, T10)) → divD_out_gga(T7, s(T8), T10)

The argument filtering Pi contains the following mapping:
divD_in_gga(x1, x2, x3)  =  divD_in_gga(x1, x2)
s(x1)  =  s(x1)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
div_sB_in_gga(x1, x2, x3)  =  div_sB_in_gga(x1, x2)
0  =  0
div_sB_out_gga(x1, x2, x3)  =  div_sB_out_gga
U2_gga(x1, x2, x3)  =  U2_gga(x3)
lssA_in_gg(x1, x2)  =  lssA_in_gg(x1, x2)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
lssA_out_gg(x1, x2)  =  lssA_out_gg
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
divD_out_gga(x1, x2, x3)  =  divD_out_gga
DIVD_IN_GGA(x1, x2, x3)  =  DIVD_IN_GGA(x1, x2)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x4)
DIV_SB_IN_GGA(x1, x2, x3)  =  DIV_SB_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3)  =  U2_GGA(x3)
LSSA_IN_GG(x1, x2)  =  LSSA_IN_GG(x1, x2)
U1_GG(x1, x2, x3)  =  U1_GG(x3)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
SUBC_IN_GGA(x1, x2, x3)  =  SUBC_IN_GGA(x1, x2)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x2, x4)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVD_IN_GGA(T7, s(T8), T10) → U7_GGA(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
DIVD_IN_GGA(T7, s(T8), T10) → DIV_SB_IN_GGA(T7, T8, T10)
DIV_SB_IN_GGA(s(T24), T25, 0) → U2_GGA(T24, T25, lssA_in_gg(T24, T25))
DIV_SB_IN_GGA(s(T24), T25, 0) → LSSA_IN_GG(T24, T25)
LSSA_IN_GG(s(T36), s(T37)) → U1_GG(T36, T37, lssA_in_gg(T36, T37))
LSSA_IN_GG(s(T36), s(T37)) → LSSA_IN_GG(T36, T37)
DIV_SB_IN_GGA(s(T49), T50, s(T52)) → U3_GGA(T49, T50, T52, subC_in_gga(T49, T50, X49))
DIV_SB_IN_GGA(s(T49), T50, s(T52)) → SUBC_IN_GGA(T49, T50, X49)
SUBC_IN_GGA(s(T66), s(T67), X77) → U6_GGA(T66, T67, X77, subC_in_gga(T66, T67, X77))
SUBC_IN_GGA(s(T66), s(T67), X77) → SUBC_IN_GGA(T66, T67, X77)
DIV_SB_IN_GGA(s(T49), T50, s(T52)) → U4_GGA(T49, T50, T52, subC_in_gga(T49, T50, T55))
U4_GGA(T49, T50, T52, subC_out_gga(T49, T50, T55)) → U5_GGA(T49, T50, T52, div_sB_in_gga(T55, T50, T52))
U4_GGA(T49, T50, T52, subC_out_gga(T49, T50, T55)) → DIV_SB_IN_GGA(T55, T50, T52)

The TRS R consists of the following rules:

divD_in_gga(T7, s(T8), T10) → U7_gga(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
div_sB_in_gga(0, T15, 0) → div_sB_out_gga(0, T15, 0)
div_sB_in_gga(s(T24), T25, 0) → U2_gga(T24, T25, lssA_in_gg(T24, T25))
lssA_in_gg(s(T36), s(T37)) → U1_gg(T36, T37, lssA_in_gg(T36, T37))
lssA_in_gg(0, s(T42)) → lssA_out_gg(0, s(T42))
U1_gg(T36, T37, lssA_out_gg(T36, T37)) → lssA_out_gg(s(T36), s(T37))
U2_gga(T24, T25, lssA_out_gg(T24, T25)) → div_sB_out_gga(s(T24), T25, 0)
div_sB_in_gga(s(T49), T50, s(T52)) → U3_gga(T49, T50, T52, subC_in_gga(T49, T50, X49))
subC_in_gga(s(T66), s(T67), X77) → U6_gga(T66, T67, X77, subC_in_gga(T66, T67, X77))
subC_in_gga(T72, 0, T72) → subC_out_gga(T72, 0, T72)
U6_gga(T66, T67, X77, subC_out_gga(T66, T67, X77)) → subC_out_gga(s(T66), s(T67), X77)
U3_gga(T49, T50, T52, subC_out_gga(T49, T50, X49)) → div_sB_out_gga(s(T49), T50, s(T52))
div_sB_in_gga(s(T49), T50, s(T52)) → U4_gga(T49, T50, T52, subC_in_gga(T49, T50, T55))
U4_gga(T49, T50, T52, subC_out_gga(T49, T50, T55)) → U5_gga(T49, T50, T52, div_sB_in_gga(T55, T50, T52))
U5_gga(T49, T50, T52, div_sB_out_gga(T55, T50, T52)) → div_sB_out_gga(s(T49), T50, s(T52))
U7_gga(T7, T8, T10, div_sB_out_gga(T7, T8, T10)) → divD_out_gga(T7, s(T8), T10)

The argument filtering Pi contains the following mapping:
divD_in_gga(x1, x2, x3)  =  divD_in_gga(x1, x2)
s(x1)  =  s(x1)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
div_sB_in_gga(x1, x2, x3)  =  div_sB_in_gga(x1, x2)
0  =  0
div_sB_out_gga(x1, x2, x3)  =  div_sB_out_gga
U2_gga(x1, x2, x3)  =  U2_gga(x3)
lssA_in_gg(x1, x2)  =  lssA_in_gg(x1, x2)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
lssA_out_gg(x1, x2)  =  lssA_out_gg
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
divD_out_gga(x1, x2, x3)  =  divD_out_gga
DIVD_IN_GGA(x1, x2, x3)  =  DIVD_IN_GGA(x1, x2)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x4)
DIV_SB_IN_GGA(x1, x2, x3)  =  DIV_SB_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3)  =  U2_GGA(x3)
LSSA_IN_GG(x1, x2)  =  LSSA_IN_GG(x1, x2)
U1_GG(x1, x2, x3)  =  U1_GG(x3)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
SUBC_IN_GGA(x1, x2, x3)  =  SUBC_IN_GGA(x1, x2)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x2, x4)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 9 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBC_IN_GGA(s(T66), s(T67), X77) → SUBC_IN_GGA(T66, T67, X77)

The TRS R consists of the following rules:

divD_in_gga(T7, s(T8), T10) → U7_gga(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
div_sB_in_gga(0, T15, 0) → div_sB_out_gga(0, T15, 0)
div_sB_in_gga(s(T24), T25, 0) → U2_gga(T24, T25, lssA_in_gg(T24, T25))
lssA_in_gg(s(T36), s(T37)) → U1_gg(T36, T37, lssA_in_gg(T36, T37))
lssA_in_gg(0, s(T42)) → lssA_out_gg(0, s(T42))
U1_gg(T36, T37, lssA_out_gg(T36, T37)) → lssA_out_gg(s(T36), s(T37))
U2_gga(T24, T25, lssA_out_gg(T24, T25)) → div_sB_out_gga(s(T24), T25, 0)
div_sB_in_gga(s(T49), T50, s(T52)) → U3_gga(T49, T50, T52, subC_in_gga(T49, T50, X49))
subC_in_gga(s(T66), s(T67), X77) → U6_gga(T66, T67, X77, subC_in_gga(T66, T67, X77))
subC_in_gga(T72, 0, T72) → subC_out_gga(T72, 0, T72)
U6_gga(T66, T67, X77, subC_out_gga(T66, T67, X77)) → subC_out_gga(s(T66), s(T67), X77)
U3_gga(T49, T50, T52, subC_out_gga(T49, T50, X49)) → div_sB_out_gga(s(T49), T50, s(T52))
div_sB_in_gga(s(T49), T50, s(T52)) → U4_gga(T49, T50, T52, subC_in_gga(T49, T50, T55))
U4_gga(T49, T50, T52, subC_out_gga(T49, T50, T55)) → U5_gga(T49, T50, T52, div_sB_in_gga(T55, T50, T52))
U5_gga(T49, T50, T52, div_sB_out_gga(T55, T50, T52)) → div_sB_out_gga(s(T49), T50, s(T52))
U7_gga(T7, T8, T10, div_sB_out_gga(T7, T8, T10)) → divD_out_gga(T7, s(T8), T10)

The argument filtering Pi contains the following mapping:
divD_in_gga(x1, x2, x3)  =  divD_in_gga(x1, x2)
s(x1)  =  s(x1)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
div_sB_in_gga(x1, x2, x3)  =  div_sB_in_gga(x1, x2)
0  =  0
div_sB_out_gga(x1, x2, x3)  =  div_sB_out_gga
U2_gga(x1, x2, x3)  =  U2_gga(x3)
lssA_in_gg(x1, x2)  =  lssA_in_gg(x1, x2)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
lssA_out_gg(x1, x2)  =  lssA_out_gg
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
divD_out_gga(x1, x2, x3)  =  divD_out_gga
SUBC_IN_GGA(x1, x2, x3)  =  SUBC_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBC_IN_GGA(s(T66), s(T67), X77) → SUBC_IN_GGA(T66, T67, X77)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
SUBC_IN_GGA(x1, x2, x3)  =  SUBC_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUBC_IN_GGA(s(T66), s(T67)) → SUBC_IN_GGA(T66, T67)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SUBC_IN_GGA(s(T66), s(T67)) → SUBC_IN_GGA(T66, T67)
    The graph contains the following edges 1 > 1, 2 > 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LSSA_IN_GG(s(T36), s(T37)) → LSSA_IN_GG(T36, T37)

The TRS R consists of the following rules:

divD_in_gga(T7, s(T8), T10) → U7_gga(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
div_sB_in_gga(0, T15, 0) → div_sB_out_gga(0, T15, 0)
div_sB_in_gga(s(T24), T25, 0) → U2_gga(T24, T25, lssA_in_gg(T24, T25))
lssA_in_gg(s(T36), s(T37)) → U1_gg(T36, T37, lssA_in_gg(T36, T37))
lssA_in_gg(0, s(T42)) → lssA_out_gg(0, s(T42))
U1_gg(T36, T37, lssA_out_gg(T36, T37)) → lssA_out_gg(s(T36), s(T37))
U2_gga(T24, T25, lssA_out_gg(T24, T25)) → div_sB_out_gga(s(T24), T25, 0)
div_sB_in_gga(s(T49), T50, s(T52)) → U3_gga(T49, T50, T52, subC_in_gga(T49, T50, X49))
subC_in_gga(s(T66), s(T67), X77) → U6_gga(T66, T67, X77, subC_in_gga(T66, T67, X77))
subC_in_gga(T72, 0, T72) → subC_out_gga(T72, 0, T72)
U6_gga(T66, T67, X77, subC_out_gga(T66, T67, X77)) → subC_out_gga(s(T66), s(T67), X77)
U3_gga(T49, T50, T52, subC_out_gga(T49, T50, X49)) → div_sB_out_gga(s(T49), T50, s(T52))
div_sB_in_gga(s(T49), T50, s(T52)) → U4_gga(T49, T50, T52, subC_in_gga(T49, T50, T55))
U4_gga(T49, T50, T52, subC_out_gga(T49, T50, T55)) → U5_gga(T49, T50, T52, div_sB_in_gga(T55, T50, T52))
U5_gga(T49, T50, T52, div_sB_out_gga(T55, T50, T52)) → div_sB_out_gga(s(T49), T50, s(T52))
U7_gga(T7, T8, T10, div_sB_out_gga(T7, T8, T10)) → divD_out_gga(T7, s(T8), T10)

The argument filtering Pi contains the following mapping:
divD_in_gga(x1, x2, x3)  =  divD_in_gga(x1, x2)
s(x1)  =  s(x1)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
div_sB_in_gga(x1, x2, x3)  =  div_sB_in_gga(x1, x2)
0  =  0
div_sB_out_gga(x1, x2, x3)  =  div_sB_out_gga
U2_gga(x1, x2, x3)  =  U2_gga(x3)
lssA_in_gg(x1, x2)  =  lssA_in_gg(x1, x2)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
lssA_out_gg(x1, x2)  =  lssA_out_gg
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
divD_out_gga(x1, x2, x3)  =  divD_out_gga
LSSA_IN_GG(x1, x2)  =  LSSA_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LSSA_IN_GG(s(T36), s(T37)) → LSSA_IN_GG(T36, T37)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LSSA_IN_GG(s(T36), s(T37)) → LSSA_IN_GG(T36, T37)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LSSA_IN_GG(s(T36), s(T37)) → LSSA_IN_GG(T36, T37)
    The graph contains the following edges 1 > 1, 2 > 2

(22) YES

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV_SB_IN_GGA(s(T49), T50, s(T52)) → U4_GGA(T49, T50, T52, subC_in_gga(T49, T50, T55))
U4_GGA(T49, T50, T52, subC_out_gga(T49, T50, T55)) → DIV_SB_IN_GGA(T55, T50, T52)

The TRS R consists of the following rules:

divD_in_gga(T7, s(T8), T10) → U7_gga(T7, T8, T10, div_sB_in_gga(T7, T8, T10))
div_sB_in_gga(0, T15, 0) → div_sB_out_gga(0, T15, 0)
div_sB_in_gga(s(T24), T25, 0) → U2_gga(T24, T25, lssA_in_gg(T24, T25))
lssA_in_gg(s(T36), s(T37)) → U1_gg(T36, T37, lssA_in_gg(T36, T37))
lssA_in_gg(0, s(T42)) → lssA_out_gg(0, s(T42))
U1_gg(T36, T37, lssA_out_gg(T36, T37)) → lssA_out_gg(s(T36), s(T37))
U2_gga(T24, T25, lssA_out_gg(T24, T25)) → div_sB_out_gga(s(T24), T25, 0)
div_sB_in_gga(s(T49), T50, s(T52)) → U3_gga(T49, T50, T52, subC_in_gga(T49, T50, X49))
subC_in_gga(s(T66), s(T67), X77) → U6_gga(T66, T67, X77, subC_in_gga(T66, T67, X77))
subC_in_gga(T72, 0, T72) → subC_out_gga(T72, 0, T72)
U6_gga(T66, T67, X77, subC_out_gga(T66, T67, X77)) → subC_out_gga(s(T66), s(T67), X77)
U3_gga(T49, T50, T52, subC_out_gga(T49, T50, X49)) → div_sB_out_gga(s(T49), T50, s(T52))
div_sB_in_gga(s(T49), T50, s(T52)) → U4_gga(T49, T50, T52, subC_in_gga(T49, T50, T55))
U4_gga(T49, T50, T52, subC_out_gga(T49, T50, T55)) → U5_gga(T49, T50, T52, div_sB_in_gga(T55, T50, T52))
U5_gga(T49, T50, T52, div_sB_out_gga(T55, T50, T52)) → div_sB_out_gga(s(T49), T50, s(T52))
U7_gga(T7, T8, T10, div_sB_out_gga(T7, T8, T10)) → divD_out_gga(T7, s(T8), T10)

The argument filtering Pi contains the following mapping:
divD_in_gga(x1, x2, x3)  =  divD_in_gga(x1, x2)
s(x1)  =  s(x1)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
div_sB_in_gga(x1, x2, x3)  =  div_sB_in_gga(x1, x2)
0  =  0
div_sB_out_gga(x1, x2, x3)  =  div_sB_out_gga
U2_gga(x1, x2, x3)  =  U2_gga(x3)
lssA_in_gg(x1, x2)  =  lssA_in_gg(x1, x2)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
lssA_out_gg(x1, x2)  =  lssA_out_gg
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
divD_out_gga(x1, x2, x3)  =  divD_out_gga
DIV_SB_IN_GGA(x1, x2, x3)  =  DIV_SB_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x2, x4)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV_SB_IN_GGA(s(T49), T50, s(T52)) → U4_GGA(T49, T50, T52, subC_in_gga(T49, T50, T55))
U4_GGA(T49, T50, T52, subC_out_gga(T49, T50, T55)) → DIV_SB_IN_GGA(T55, T50, T52)

The TRS R consists of the following rules:

subC_in_gga(s(T66), s(T67), X77) → U6_gga(T66, T67, X77, subC_in_gga(T66, T67, X77))
subC_in_gga(T72, 0, T72) → subC_out_gga(T72, 0, T72)
U6_gga(T66, T67, X77, subC_out_gga(T66, T67, X77)) → subC_out_gga(s(T66), s(T67), X77)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
0  =  0
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
DIV_SB_IN_GGA(x1, x2, x3)  =  DIV_SB_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x2, x4)

We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV_SB_IN_GGA(s(T49), T50) → U4_GGA(T50, subC_in_gga(T49, T50))
U4_GGA(T50, subC_out_gga(T55)) → DIV_SB_IN_GGA(T55, T50)

The TRS R consists of the following rules:

subC_in_gga(s(T66), s(T67)) → U6_gga(subC_in_gga(T66, T67))
subC_in_gga(T72, 0) → subC_out_gga(T72)
U6_gga(subC_out_gga(X77)) → subC_out_gga(X77)

The set Q consists of the following terms:

subC_in_gga(x0, x1)
U6_gga(x0)

We have to consider all (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


DIV_SB_IN_GGA(s(T49), T50) → U4_GGA(T50, subC_in_gga(T49, T50))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIV_SB_IN_GGA(x1, x2)) = x1   
POL(U4_GGA(x1, x2)) = x2   
POL(U6_gga(x1)) = 1 + x1   
POL(s(x1)) = 1 + x1   
POL(subC_in_gga(x1, x2)) = x1   
POL(subC_out_gga(x1)) = x1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

subC_in_gga(s(T66), s(T67)) → U6_gga(subC_in_gga(T66, T67))
subC_in_gga(T72, 0) → subC_out_gga(T72)
U6_gga(subC_out_gga(X77)) → subC_out_gga(X77)

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGA(T50, subC_out_gga(T55)) → DIV_SB_IN_GGA(T55, T50)

The TRS R consists of the following rules:

subC_in_gga(s(T66), s(T67)) → U6_gga(subC_in_gga(T66, T67))
subC_in_gga(T72, 0) → subC_out_gga(T72)
U6_gga(subC_out_gga(X77)) → subC_out_gga(X77)

The set Q consists of the following terms:

subC_in_gga(x0, x1)
U6_gga(x0)

We have to consider all (P,Q,R)-chains.

(30) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(31) TRUE